An inexact interior-point method for system analysis

نویسندگان

  • Janne Harju Johansson
  • Anders Hansson
چکیده

(Rece;"cd 00 Monlh 20Ox; final ...,rsiaH recei"ed 00 Monlh £OOX) In this paper a primal-dual interior-point algorithm for semidefinite programming that can be used for analrzing e.g_ polytopic linear difleTential indusions is tailored in order to be more computationally efficient. The key to th" speedup is to allow for inexact ..,,,rch directions in the inteciOT_point algorithm. Th.,..., are obtained be aborti"g IU' itenl.tive so"'er for colllputing the. the algorithm is gi,-en. 1''''0 different preconditioner, for the iterative soh'"r ase propoood. Th" speedup ill in many ca.>cs more than an order of magnitude. Moroover. the propoood algorithm can be used to analyze much larger problems"" compared to what is poossible with off-the-shelf interior-j>oiot ""Ivers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Convergence Analysis of Inexact Infeasible Interior Point Method for Linear Optimization

In this paper we present the convergence analysis of the inexact infeasible path-following (IIPF) interior point algorithm. In this algorithm the preconditioned conjugate gradient method is used to solve the reduced KKT system (the augmented system). The augmented system is preconditioned by using a block triangular matrix. The KKT system is solved approximately. Therefore, it becomes necessary...

متن کامل

Convergence Analysis of the Inexact Infeasible Interior-Point Method for Linear Optimization

We present the convergence analysis of the inexact infeasible pathfollowing (IIPF) interior-point algorithm. In this algorithm, the preconditioned conjugate gradient method is used to solve the reduced KKT system (the augmented system). The augmented system is preconditioned by using a block triangular matrix. The KKT system is solved approximately. Therefore, it becomes necessary to study the ...

متن کامل

A nonmonotone inexact Newton method

In this paper we describe a variant of the Inexact Newton method for solving nonlinear systems of equations. We define a nonmonotone Inexact Newton step and a nonmonotone backtracking strategy. For this nonmonotone Inexact Newton scheme we present the convergence theorems. Finally, we show how we can apply these strategies to Inexact Newton Interior–Point method and we present some numerical ex...

متن کامل

An inexact interior point method for L 1-regularized sparse covariance selection

Sparse covariance selection problems can be formulated as log-determinant (log-det ) semidefinite programming (SDP) problems with large numbers of linear constraints. Standard primal-dual interior-point methods that are based on solving the Schur complement equation would encounter severe computational bottlenecks if they are applied to solve these SDPs. In this paper, we consider a customized ...

متن کامل

Convergence Analysis of an Inexact Infeasible Interior Point Method for Semidefinite Programming

In this paper we present an extension to SDP of the well known infeasible Interior Point method for linear programming of Kojima, Megiddo and Mizuno (A primal-dual infeasibleinterior-point algorithm for Linear Programming, Math. Progr., 1993). The extension developed here allows the use of inexact search directions; i.e., the linear systems defining the search directions can be solved with an a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Control

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2010